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Abstract

BACKGROUND:Early discrimination andpredictionof cognitive decline are crucial for

the study of neurodegenerative mechanisms and interventions to promote cognitive

resiliency.

METHODS: Our research is based on resting-state electroencephalography (EEG)

and the current dataset includes 137 consensus-diagnosed, community-dwellingBlack

Americans (ages 60–90 years, 84 healthy controls [HC]; 53 mild cognitive impairment

[MCI]) recruited through Wayne State University and Michigan Alzheimer’s Disease

Research Center. We conducted multiscale analysis on time-varying brain functional

connectivity and developed an innovative soft discrimination model in which each

decision onHC orMCI also comes with a connectivity-based score.

RESULTS: The leave-one-out cross-validation accuracy is 91.97% and 3-fold accu-

racy is 91.17%. The 9 to 18 months’ progression trend prediction accuracy over an

availability-limited subset sample is 84.61%.

CONCLUSION: The EEG-based soft discrimination model demonstrates high sensi-

tivity and reliability for MCI detection and shows promising capability in proactive

prediction of people at risk ofMCI before clinical symptomsmay occur.

KEYWORDS

cognitive health, mild cognitive impairment, resting-state electroencephalography (rsEEG)

1 INTRODUCTION

Developing economically viable assessment tools and biomarkers

that are highly sensitive to cognitive decline and neural dysfunction,

before frank Alzheimer’s disease (AD) pathology, is critical for the

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.

© 2023 The Authors. Alzheimer’s & Dementia published byWiley Periodicals LLC on behalf of Alzheimer’s Association.

study of neurodegenerativemechanisms and interventions to promote

cognitive resiliency,1–7 especially for underserved populations who

may face challenges in acquiring proper health care.8,9

Due to its high time resolution, accessibility, affordability, and

patient acceptance, electroencephalography (EEG)-based detection
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of AD and mild cognitive impairment (MCI) has attracted increased

research attention.10–25 The results in the existing literature, however,

are mixed and call for newer analytic methods. Notably, in several

recent papers,20–22 it was reported that very high accuracy (>96%)

may be achieved over modest sample sizes (22–34 participants).

However, the scalability and reproducibility of these approaches still

need to be further verified. On the other hand, in a study25 which

included a relatively large sample of 336 older participants, it was

reported that the accuracy of EEG-based healthy control (HC) and

MCI discrimination was only 61.76%.

This article focuses on data collected from Black American seniors

with high susceptibility to cognitive decline and aims to develop a reli-

able and sensitive assessment tool for the early detection of persons

at risk for MCI based solely on resting-state EEG. The basic idea is to

develop a soft discrimination model for HC and MCI which not only

can produce a binary decision (also known as a hard decision) on HC or

MCI for each tested participant but also can provide a soft score that

characterizes the overall functional connectivity of the participant.

First, we conduct multiscale analysis on dynamic brain functional

connectivity. Existing research suggests that the abnormal brain

functions in AD and MCI are closely related to the weakening or loss

of connectivity among critical brain regions.26–35 In the literature,

functional connectivity between two brain regions is often taken as a

static parameter and is represented as a constant, such as the Pearson

correlation of two time series.36 More recently, however, it has been

observed37–42 that in fact, functional connectivity varies significantly

with time, and the dynamic variation of functional connectivity may

indicate changes in neural activity patterns in cognitive and behavioral

aspects.43

In this article, instead of using a fixed observation window

size as in traditional evaluation tools for time-varying functional

connectivity,44–47 we choose to use a whole set of different window

sizes and therefore capture the dynamics of the functional connectiv-

ity at different frequency resolutions, which we refer to as “multiscale

analysis.”We generate the feature vectors for each participant accord-

ingly and feed the selected features into a machine-learning algorithm

for the discrimination of HC andMCI. By tuning the observing window

size and the group of features used, we obtain a series of approaches—

each represents a different configuration of the discrimination model

and has its own accuracy.

The new biomarkers introduced here reflect how functional con-

nectivity is changing in both the time and frequency domains across

the EEG-based regions of interest (ROIs) in HC and MCI. Our analysis

indicates that these biomarkers are closely related to the resting-state

EEG biomarkers for AD as identified inmost consistent findings.10–14

Second, unlike existing work which generally relies only on one

detection approach,19–21,23,24 our soft discrimination of HC and MCI

is obtained through weighted majority voting of a selected group of

reliable discrimination approaches. This combination of diversified

approaches takes the discrepancies between HC and MCI from

different perspectives into consideration, and greatly improves the

accuracy, stability, and reliability of the proposed model. Moreover, in

addition to a binary HC or MCI decision, our result also comes with

RESEARCH INCONTEXT

1 Systematic review: The authors reviewed the litera-

ture using traditional (e.g., PubMed) sources and meet-

ing abstracts and presentations. Electroencephalography

(EEG)-based detection ofmild cognitive impairment (MCI)

has attracted increased research attention recently. The

results in the existing work, however, are mixed and call

for further analysis. The relevant citations are appropri-

ately cited.

2 Interpretation: The novel EEG-based discrimination

model demonstrates high sensitivity and stability for MCI

detection. In addition, each decision on healthy controls

orMCI also comeswith anEEG-based brain activity status

score, which shows promising capability in predicting the

personal progression trend of cognitive health in older

adults.

3 Future directions: The article proposes a framework for

the development of new approaches for the detection and

prediction of MCI and the conduct of additional studies.

Examples include: (1) personalizedMCIdetectionandpre-

diction based on dynamic brain connectivity and (2) joint

analysis of functional and effective connectivity for early

detection of the risk ofMCI.

a connectivity-based score of the participant obtained from the EEG

data, which reflects the status of the overall physiological brain activity

at the resting state and shows promising capability in predicting the

individualized progression of cognitive health in older adults, and

hencemakes it possible for the early detection of people at risk ofMCI

even before the clinical symptomsmay be recognizable.

2 MATERIALS AND METHODOLOGY

2.1 Participants and demographic data

We recruited 137 community-dwelling Black participants (122

females, 15 males), ranging in age from 60 to 90 years, from the

greater Detroit area. Some of the participants were recruited at the

Healthier Black Elders Center, a collaboration between Wayne State

University’s Institute of Gerontology and University of Michigan’s

Institute of Social Research,48 and others were recruited through the

Michigan Alzheimer’s Disease Research Center (MADRC) from out-

reach programs in local churches and community centers. To evaluate a

group of community-dwelling participants with a high risk of cognitive

decline, persons were recruited if they considered themselves to be

fully functioning, though they also responded positively to a question

asking if they were concerned that they may have experienced a

potential decline in cognitive ability over the past year. All participants
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DENG ET AL. 147

TABLE 1 Demographic information of our participants.

Controls aMCI naMCI

Demographic M SD M SD M SD P

Sex

Female (number, %) 76 (90%) 31 (86%) 16 (94%)

Male (number, %) 8 (10%) 5 (14%) 1 (6%)

Age 72.19 6.17 74.92 6.66 74.00 8.01 0.04

Education 15.40 2.32 14.64 2.40 15.06 2.59 0.13

Abbreviations: aMCI, amnestic mild cognitive impairment;M, mean; naMCI, non-amnestic mild cognitive impairment; SD, standard deviation.

were diagnosed through the MADRC consensus conference using

the National Alzheimer’s Coordinating Center (NACC) Uniform Data

Set (UDS)—84 of them being HC and 53 with MCI (42 amnestic MCI

[aMCI] and 11 non-amnestic MCI [naMCI]). Because of the small

number of naMCI participants, all MCI were combined into one group.

All participants consented and signed a written consent document. All

procedures were in accordance with the principles expressed in the

Declaration of Helsinki and approved by the Wayne State University

Institutional Review Board and the University of Michigan Medical

School Institutional Review Board.

The demographic information of our participants is presented in

Table 1. There were no significant differences among HC, aMCI, and

naMCI participants in terms of education, and as expected, the average

age of theMCI group is slightly higher than that of the HC group.

2.2 Non-invasive EEG recordings

Brain vision (Brain Vision, Inc.) equipment was used to record scalp

EEG activity with a non-invasive high-density actiCap (64 active elec-

trodes), modified according to the International 10–20 System. That is,

the electrodes were only attached to the scalp surface. The recording

locations included the FCz electrode as an online reference and the

AFz electrode at the midline location as a ground. After proper placing

of the electrode cap with 64 electrodes and obtaining satisfactory

impedances, the participant was seated behind the desk in a comfort-

able chair, adjusted for height, in a dimly lit room. As part of a larger

study on brain activity event-related potential (ERP), each participant

received a 3-minute, eye-closed resting-state EEG recording.15

In this article, we focus on resting-state EEG, which requires no

training or active responses of the participants and is more desirable

for clinical operability compared to task-based EEG. More specifically,

eye-closed resting-state EEG is adopted in this article for higher scal-

ability, reproducibility, and clinical operability, as well as minimalizing

external influence.

2.3 Experimental procedures

Weperformed EEG recordings in a community center at theUniversity

of Michigan (UM) Detroit Center or the Institute of Gerontology at

Wayne State University using the same EEG system. We evaluated

several available spaces with a Gauss meter prior to EEG recording

to find the area with the least external noise (preferably < 0.3 mG) to

obtain an acceptable EEG signal. Active electrodes also were used to

additionally isolate external noise, minimize cable movement artifacts,

and keep impedances below 10 kΩ.15,49

2.4 EEG data pre-processing

Analyzer 2 (Brain Vision, Inc.) was used for pre-processing of the base-

line EEG data following the recommendations from the Organization

forHumanBrainMappingCommitteeonBestPractice inDataAnalysis

and Sharing Magnetoencephalographic and Electroencephalographic

committee.50 Off-line inspection was used to identify and remove

segments of EEG contaminating either excessive noise, saturation, or

lack of EEG activity. We segmented cleaned EEG data in consecutive

epochs of 2 seconds and analyzed off line (1024 data points; 0.488 Hz

resolution; Hanning window).15 An automatic computerized proce-

dure using a rejection criterion of+/– 100mV on any channel affected

by artifacts (muscular, instrumental) was used to identify acceptable

epochs. The artifact-free segments were additionally detrended and

baseline corrected before averaging.

After the preprocessing procedure, the shortest length of the

eye-closed, resting-state EEG among all the 137 participants was

110 s. Therefore, for each participant, we kept the first 110 s of the

eye-closed, resting-state EEG signals of all the 64 channels for further

analysis.

2.5 Selection of ROIs

As illustrated in Figure 1, we selected a total of 12 ROIs:51 right

frontal—RF (Fp1, AF7, AF3, F7, F5, F3), medium frontal—MF (F1,

Fz, F2, FC1, FC2), left frontal—LF (F4, Fp2, AF4, AF8, F6, F8), left

temporal—LT (FT9, FT7, T7, TP7, TP9), left central—LC (FC5, FC3, C5,

C3, CP5, CP3), medial central—MC (C1, Cz, C2, CP1, CPz, CP2), right

central—RC (FC4, FC6, C4, C6, CP4, CP6), right temporal—RT (FT10,

FT8, T8, TP8, TP10), left parietal—LP (P7, P5, P3, PO7, PO3), medial

parietal—MP (P1, Pz, P2, POz), right parietal—RP (P4, P6, P8, PO4,

PO8), occipital—O (PO9, O1, Oz, O2, PO10).
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148 DENG ET AL.

F IGURE 1 The regions of interest. LC, left central; LF, left frontal;
LP, left parietal; LT, left temporal; MC, medial central; MF, medium
frontal; MP, medial parietal; O, occipital; RC, right central; RF, right
frontal; RP, right parietal; RT, right temporal.

Before further analysis, we calculated the current source den-

sity (CSD) or the Laplacian (second spatial derivative) of the scalp

voltage52–54 from the EEG signal for all the ROIs using the CSD Tool-

box in MATLAB.55 Please refer to the Supplemental File in supporting

information for more details.

3 RESULTS

3.1 Multiscale evaluation and analysis of
time-varying functional connectivity

We evaluated the time-varying functional connectivity between

all the selected ROIs using the sliding window approach. In most

of the existing work involving the sliding window approach, a

fixed window size is used.21,37,42 A commonly asked question

is: what is the right window size? Denoting the window size

by L, we chose to investigate a whole set of window sizes L =

25, 50, 100, 200, 400, 800, 1600, and 3200 samples, with the sam-

pling period being Ts = 2ms, and performed a multiscale evaluation

of the time-varying connectivity for the brain network of each subject.

The base-2 scaling of the window size is motivated by the discrete

wavelet transform.56 Denoting the length of the CSD signal as Tc, in

our case, Tc = 55,000 samples (i.e., 110s). For each fixed window size

L, we partitioned theCSDof eachROI into successive, non-overlapping

blocks of length L and evaluated the functional connectivity—in terms

of Pearson correlation—among the time-synchronized blocks corre-

sponding to all the ROI region pairs. In this way, for each region pair,

instead of a single connectivity value, we obtained a Pearson corre-

lation vector, denoted as P = [P1,P2, … , PK], where K =
Tc
L
. As can

be seen, vector P elaborates how the functional connectivity between

brain regions changes over time. The window size L determines the

time and frequency resolutions of the Pearson correlation vector P.

By calculating the Pearson correlation vector under different window

sizes for each region pair, we obtained a multiscale evaluation of the

time-varying functional connectivity of the ROI network.

Note that we had a total of 12 EEG-based ROIs—this implies there

were altogether 66 region pairs. Therefore, for each subject, we had

66 Pearson correlation vectors. We then performed a time-frequency

analysis to each Pearson correlation vector using the continuous

Wavelet Toolbox in MATLAB57 and found the wavelet coefficients Cj,k ,

where j corresponds to frequency and k corresponds to time shift. For

each of the 66 region pairs, we calculated the mean, minimum, and

maximum of Cj,k with respect to k and took all the 66 × 3 = 198 of

them as primitive features. This procedure was conducted for every

window size L.

After generating the primitive features for each subject based on

joint time–frequency–spatial analysis of the functional connectivity

of the EEG-based ROI network, we are ready to move to the next

phase: the discrimination. Due to the small size of the MCI sample set

(especially naMCI), we combined aMCI and naMCI into one group for

HC andMCI discrimination, as in existing works.20–25

We would like to point out that particularly important from a non-

invasive EEG analysis standpoint, the novel multiscale time-varying

functional connectivity analysis technique introduced here breaks the

barriers of fixedwindow size in the slidingwindowapproach andbrings

the long-lasting discussion on how to select the window size to an end.

As will be seen from the next section, adopting multiple window sizes

allows us to develop a whole series of discrimination approaches—

each represents a unique window size and feature group configuration

of our discrimination model and has its own accuracy—and therefore

provides us a large pool of HC andMCI classifiers fromwhich to select.

3.2 Soft discrimination of HC and MCI

Traditionally, for a given participant, the discrimination result is gener-

ally a binary decision—also called a hard decision—which is either HC

or MCI. Here, by soft discrimination, we mean that in addition to the

binary decision ofHCorMCI, our discrimination result also comeswith

a connectivity-based score, which potentially can be used as a predic-

tor for the cognitive health of each participant. In the following, the

proposed soft discrimination procedure is summarized in four steps,

in which we first constructed the hard decision classifiers and then

performed soft discrimination through majority voting of a group of

selected, reliable classifiers.

In step 1, feature selection, a discriminating feature is one

whose presence is more indicative of one sentiment over the

other. For each fixed window size L, each primitive feature for

all the 137 subjects was put together and screened using the

t test, and only M out of the 198 primitive features with the
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DENG ET AL. 149

smallest P-values were selected to formulate the feature vector.

Here L = 25, 50, 100, 200, 400, 800, 1600, and 3200, and M =

10, 15, 20, 25, 30, 35, 40, or 45. That is, each of them can take

eight possible values, and each (L,M) pair represents one configu-

ration of our discrimination model. Therefore, all together, we have

8 × 8 = 64 possible hard-decision discrimination approaches or

classifiers.

In step 2, dimension reduction, for each fixed (L,M) pair, the corre-

sponding feature vector has lengthM. Using a regularized LDA (linear

discriminant analysis),58 we mapped the feature vector of each par-

ticipant to a point in a one-dimensional subspace or axis, in which the

difference between HC and MCI subjects is maximized. Regularized

LDA was used to reduce the noise effect (caused by both biological

variability andmeasurement errors) in the size-limited data set.58

In step 3, first-layer discrimination using single classifiers, we then

constructed the decision trees based on the LDA output and carried

out the classification using the AdaBoost classifier, which has proved

to be a highly effective classification tool.58

We repeated Steps 2 and 3 for all the (L,M) pairs, and therefore

obtained a series of 64 classifiers or discrimination approaches, in

which each of them is a unique configuration of our discrimination

model and has its own accuracy.

In step 4, soft discrimination of HC and MCI through majority vot-

ing of selected classifiers, note that each classifier has a different

feature group from all the other classifiers and each feature reflects

the difference between HC and MCI from a unique perspective. We

selected a group of N reliable classifiers (i.e., the N classifiers with

the highest accuracy, here N is an odd number) and performed the

final discrimination of HC and MCI through weighted majority voting.

More specifically, for n = 1, 2, ⋯ , N, denote the vote of voter n as

vn, where vn = +1 if the decision is HC and vn = −1 if the decision is

MCI. Denoting the accuracy of voter n by an, then for each subject, in

addition to the binary output of HC or MCI, we can also obtain a soft

discrimination output s =
1

N

N∑
n = 1

anvn, which is a connectivity-based

score of the participant obtained from the EEG data and reflects the

status of the overall physiological brain activity at the resting state.

Potentially, it can be used to predict how likely the participant is to

progress fromHC toMCI, or fromMCI to AD.

The effectiveness of majority voting can be roughly illustrated

through the following result: assuming there are N (where N is an odd

number) independent voters, all with classification accuracy a, then the

probability that the majority voting delivers the correct result, pc, is

given by

pc = prob {majority voting result is correct} =
N∑

k=m

(
N

k

)
ak(1 − a)

N−k

where m =
N+1

2
(note that N is odd) is the smallest number of cor-

rect voters needed for the majority voting result to be correct. The

value of pc under different number of voters and voter accuracy is illus-

trated in Figure 2. For example, if a = 0.70 and N = 25, then pc =

0.98. As can be seen, when the individual voter accuracy is reasonably

high (e.g., a > 0.60), majority voting can improve the discrimination

accuracy significantly when the number of voters is sufficiently large.

In our case, even though the voters (i.e., the selected classifiers) are

not completely independent, each classifier relies onadifferent feature

group from all the other classifiers. As will be seen in the next section,

majority voting can improve discrimination sensitivity and stability

significantly.

We would like to point out that an odd number of classifiers is

selected here to avoid the situation in which we have an equal number

of positive and negative votes. However, because our soft score also

takes the accuracy of each classifier into consideration, an even num-

ber of voters may work as well because the voters are unlikely to have

identical accuracy.

3.3 Discrimination results of individual classifiers

We conducted the discrimination process for all the indi-

vidual classifiers corresponding to each (L,M) pair, where

L = 25, 50, 100, 200, 400, 800, 1600, 3200 is the window size

and M = 10, 15, 20, 25, 30, 35, 40, 45 is the number of features

with the smallest P-values selected. To assess the accuracy of the

classifiers, we adopted the traditional leave-one-out test as well as

the k-fold (with k = 10, 5, 3) cross-validation technique.59 This is

because in addition to leave-one-out or 10-fold (i.e., leave-10%-out)

cross-validation, a clinically desirable test would use 5-fold or even

3-fold cross-validations.60

In the k-fold cross-validation, the data are split into k equally sized

subsets, which are also called “folds.” One of the k-folds acts as the test

set, also known as the holdout set or validation set, and the remain-

ing folds train the model. This process is repeated until each fold has

acted as a holdout fold.Whenall iterations are completed, the accuracy

scores for all the test sets are averaged to evaluate the performance of

the classifier.

For a more accurate assessment of our discrimination model, ran-

domshuffleswere applied to enhance thedataset cardinality61 (i.e., the

number of participants in that dataset) in the k-fold cross-validation.

More specifically, for each k, the k-fold cross-validation was repeated

10 times, and each time, the dataset was randomly shuffled to ensure

sufficient diversity in the k-fold test.

The discrimination accuracy tables of the individual classifiers for

leave-one-out, 10-fold, 5-fold, and 3-fold cross-validations are shown

in Figure 3. As can be seen, as we gradually reduced the size of the

training set and increased the size of the test set, the accuracy scores

of the classifiers may decrease slightly, but continue to demonstrate

relatively high stability in the tests.

3.4 Majority voting and soft discrimination

We selected N = 21 classifiers, which delivered the highest accuracy

in leave-one-out cross-validation as our voters, as marked by the red

boxes in Figure 3. The same group of voters was used for the soft
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150 DENG ET AL.

F IGURE 2 Majority voting accuracy versus
the number of independent voters. As can be
seen, themajority voting accuracy increases
with the number of independent voters when
individual voter accuracy is reasonably high
(e.g., a> 0.6).

discrimination of HC and MCI for leave-one-out, 10-fold, 5-fold, and

3-fold cross-validations, and the results based on weighted majority

voting are shown in Figure 4 through the confusionmatrices.

As can be seen, the voting-based soft discrimination achieved high

accuracy (>91%) for leave-one-out and k-fold (K = 10, 5, 3) cross-

validations, and demonstrated significantly higher sensitivity and sta-

bility than the individual classifiers as we gradually downsized the

training set and extended the test set. It is interesting to note that 10-

fold cross-validation shows a higher accuracy than leave-one-out. This

is because the dataset is oversampled when it is randomly shuffled 10

times, which increases the resolution of the accuracy scores. We also

compared the leave-one-out discrimination accuracy for sex, and our

analysis indicated that thediscriminationmodel does showcomparable

sensitivity on females andmales.

The soft discrimination score for each participant is shown in

Figure 5A, together with the mean and variance for both the HC and

MCI groups. Note that “+1” represents pure HC, and “−1” represents

pureMCI. Each participant received a score swithin (−1,+1), in which

a positive s implies that the decision is HC, and a negative s implies that

thedecision isMCI. At the same time, the connectivity-based soft score

s could also serve as an indicator of the cognitive health level in the

sense that the larger the s, the better the cognitive health. For example,

a score of 0.83 would indicate that the participant is in a very opti-

mistic HC condition, and a score of 0.12 would indicate that although

the participant is classified as HC, there is a trend that the participant

may progress to the MCI condition. A similar interpretation applies to

the negative scores. In other words, the soft discrimination score may

be used to predict whether an HC participant is likely to progress to

MCI, which is critical for timely intervention or treatment to prevent

the cognitive condition from gettingworse or for clinical trial inclusion.

The distribution of the soft discrimination scores is shown in

Figure 5B. As expected, errors occur mainly in the score range

[−0.2, 0.2], where the differences between low-scoring HC and high-

scoringMCI are not that significant.

We also compared the aMCI (36 participants) and naMCI (17 par-

ticipants) groups on the mean and variance of the soft score; please

refer to Section2of the Supplemental File. Itwas observed that naMCI,

which generally has less severe cognitive decline than aMCI, also has

a slightly higher average soft score (Mean = −0.3678, Var = 0.0873)

than aMCI (Mean = −0.3761, Var = 0.0794). This does not apply to

the misclassified (i.e., incorrectly classified) group mainly due to the

extremely small sample sizes of themisclassified groups (five aMCI and

two naMCI). However, what can be observed is that the correctly clas-

sified groups have a low average score (Mean=−0.4550 for aMCI and

Mean = −0.4273 for naMCI), while the average soft scores of the mis-

classified groups (Mean = 0.1129 for aMCI and Mean = 0.0789 for

naMCI) fall into the same interval with HCwith low soft scores.

3.5 Soft-decision score and possible progression
trend prediction

Out of the total 137 participants, 74 had a follow-up MADRC con-

sensus diagnosis. Of these 74 participants, there were 26 who had

at least one follow-up consensus diagnosis made by MADRC in

about 9 to 18 months after the EEG test. Out of these 26 par-

ticipants, there were 19 who had a consensus diagnosis made or

remained unchanged in about 12-18 months after the EEG test, one

participant had a consensus diagnosis in 8 months after the EEG

test.

Note that our soft-decision scores were obtained based on the

EEG data; we explored the possibility of predicting the tempo-

ral progression trend of each participant in 9 to 18 months after

the EEG test, and the result is shown in Table 2. Motivated by
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DENG ET AL. 151

F IGURE 3 Discrimination results for individual classifiers: A,leave-one-out cross-validation; (B) 10-fold cross-validation; (A) 5-fold
cross-validation; (B) 3-fold cross-validation. Each individual classifier is uniquely determined by the window size and the number of features used
and has its own accuracy. As can be seen, whenwe gradually reduced the size of the training set and extended the holdout set, the discrimination
results downgraded slightly but demonstrated relatively high stability in the tests. The 21 classifiers which delivered the highest accuracy in
leave-one-out cross-validation were selected as our voters andmarked by the red boxes.

Figure 2, our prediction criterion was: (1) if the soft score s ≥ 0.2,

then the participant would remain HC for 9 to 18 months, other-

wise (2) if 0 < s < 0.2, then the participant is likely to progress to

MCI after 9 to 18 months; (3) if −0.8 < s < 0, then the participant

would remain MCI for 9 to 18 months; and (4) if s ≤ −0.8, then

the participant is likely to progress to AD after 9 to 18 months.

For each participant who has been correctly classified, based on

whether the progression trend is predicted correctly or incorrectly,

we marked the result as “correct trend” or “incorrect trend,” respec-

tively.When our discrimination decisionwas incorrect, wemarked it as

“misclassified.”

As can be seen from Table 2, of the 26 subjects, we have correct

trend (i.e., subjects with progression trend predicted correctly): 22 out

of 26, 84.61%; incorrect trend (i.e., subjects with progression trend

predicted incorrectly): 3 out of 26, 11.54%; misclassified: 1 out of 26,

3.85%. It is worth noting that the fifth participant in Table 2, got a soft

scoreof 0.114,whichput that person in theHCgroupbut indicates that

the participant is more likely to progress toMCI. [Correction added on

December 27, 2023, after first online publication: In the preceding sen-

tence, the subject ID was removed.] The prediction is validated in the

follow-up visit 1 year later and therefore this one is marked “correct

trend.”

For all 26 participants examined, the lowest soft score was s =

−0.7258 and none of them progressed to AD in 9 to 18 months after

the EEG test. Due to data limitation, in this article, we have been

focused on the proactive prediction ofMCI for people diagnosed asHC

and were not able to explore the possible conversion from MCI to AD

yet, but the MADRC will continue to follow these individuals so that

longitudinal data will become available as time goes on.Wewould also

like to emphasize that due to high uncertainty and instability in the cog-

nitive condition of the senior population group, our prediction ismainly

limited to 18months.
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152 DENG ET AL.

F IGURE 4 Majority voting results—the confusionmatrices for: (A) leave-one-out; (B) 10-fold; (C) 5-fold; (D) 3-fold. To enhance the dataset
cardinality,10 random shuffles were applied for 10-fold, 5-fold, and 3-fold cross-validations. As can be seen, the soft discriminationmodel achieves
high accuracy (>91%) for leave-one-out and K-fold (K= 10, 5, 3) cross-validations.We also compared the leave-one-out discrimination accuracy
for sex, and the discriminationmodel does show comparable sensitivity on female andmale.

3.6 A recapitulation of feature selection

From Figure 3, we can see that the selected voters were all corre-

sponding to window sizes L = 50, 100, 200, 400, 800, 1600, and

no features were selected from window sizes L = 25 or 3200. This

was because when the window size is too small, the corresponding

Pearson correlation vector cannot really reflect the statistical property

of the functional connectivity between region pairs; when the win-

dow size is too large, the Pearson correlation vector cannot accurately

capture the time-varying property of the functional connectivity.

The complete tables of selected features for window sizes L =

50, 100, 200, 400, 800, 1600 can be found in the Supplemental File.

Our analysis indicated that the region pairs occurring most frequently

in the features (for L = 50, 100, 200, 400, 800, 1600) are: right

parietal (RP)↔ occipital (Occ), left temporal (LT)↔ right parietal (RP),

left temporal (LT) ↔ right central (RC), left temporal (LT) ↔ medial

parietal (MP).

The frequency that each ROI region occurs in the selected features

are shown in Figure 6. As can be seen, RP, MP, LT, and Occ were the

ROI regions that appeared most frequently in the features, indicating

that these regions play significant roles in identifying the differences

in resting-state brain connectivity between HC and MCI. These brain

regions are exactly those most often cited as involved in MCI and

AD deterioration.11,14 It also should be noted that EEG electrodes do

reflect surrounding area activities to some degree.

From Figure 6, the reciprocal relationship between the window size

and frequency range of the features can also be observed, illustrating

the concept of multiscale functional connectivity analysis in both time

and frequency domains.

4 DISCUSSION

In this article, we developed and verified a highly sensitive and reliable

soft discrimination model for HC and MCI based only on 3 minutes

of resting state EEG. By choosing a diversified group of reliable clas-

sifiers as voters, which were generated through multi-scale analysis

of time-varying functional connectivity between the ROIs, a soft dis-

crimination score was obtained for each participant through weighted

majority voting of all these voters. The connectivity-based soft score

not only can provide a hard binary decision on HC or MCI but can also

serve as an indicator of the participant’s cognitive health status. Our

preliminary results on 9 to 18 months’ progression trend prediction

indicated that the soft score shows promising capability in predicting

a person’s progression trend towardMCI, especially Black seniors, and

thereforemay enable the early detection of individuals at a high risk of

MCI even before the clinical symptoms may clearly appear. This is cru-

cial in research toward preventing pathological cognitive decline from

a very early stage and reducing the risk of AD and related dementia.

Upon further demonstration, our discrimination model may be

developed into a cost-effective, highly sensitive, non-invasive, and

personalized assessment tool for early detection of individuals at

risk of cognitive impairment, which could encourage and promote

cognitive resiliency in seniors, especially older Black individuals.
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DENG ET AL. 153

F IGURE 5 Soft discrimination of HC and
MCI based on leave-one-out cross-validation.
(A), Soft discrimination scores in ascending
order. Here “+1” represents pure HC, and “−1”
represents pureMCI. Each participant receives
a soft score swithin (−1,+1), in which a
positive s implies that the decision is HC, and a
negative s implies that the decision isMCI. At
the same time, the soft score smay also serve
as an indicator of the cognitive health level in
the sense that the larger the s, the better the
cognitive status. Potentially, the soft
discrimination scoremakes it possible to
predict the personal progression trends for
MCI. (B), Distribution of the soft discrimination
scores. As expected, incorrect prediction
happensmainly when the soft discrimination
score is within the range [−0.2, 0.2], where the
differences between low-scoring HC and
high-scoringMCI are not significant. EEG,
electroencephalography; HC, healthy control;
LOO, leave one out; MCI, mild cognitive
impairment.

Studies have shown that community-dwelling older Black Ameri-

cans show faster rates of cognitive decline than olderWhiteAmericans

and are almost twice as likely to develop MCI and AD.8,9 This study

focuses on EEG data collected among high-risk older Black Americans,

a highly underservedpopulation, andmayprovide abetter understand-

ing of uniqueness of such populations and promote health equity.

In the following, we discuss the relationship of this study with exist-

ing work on EEG biomarkers and predictive models for AD pathology

and deterioration, as well as some possible limitations faced by the

proposed soft discriminationmodel.

In reference to the relationship with existing work on resting-state

EEG biomarkers for AD pathology, recall that the new biomarkers

introduced in this study reflect how functional connectivity is changing

in both the time and frequency domains across the EEG-based ROIs in

HC and MCI. Here we articulate the underlying relationship between

these new biomarkers and existing resting-state EEG biomarkers for

AD pathology.

In literature,10–13 it was pointed out that as most consistent

findings, AD patients with MCI and dementia showed abnormalities

in peak frequency, power, and “interrelatedness” resting-state EEG

measures (e.g., directed transfer function, phase lag index, linear

lagged connectivity, etc.) at delta (0.5–4 Hz), theta (4–8 Hz), and alpha

(8–12Hz) rhythms in relation todisease progression and interventions.

From Figure 3, in which the discrimination results for individual

classifiers are presented, it can be seen that the most reliable voters

lie in the window size L = 50, 100, 200, ⋯ , 1600. Recall that our
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154 DENG ET AL.

TABLE 2 Soft-decision score and progression trend prediction.

Subject

EEG Test

Year

Decision and

& Soft Score

1st Visit:

Year, Diagnosis

2nd Visit:

Year, Diagnosis

3rd Visit:

Year, Diagnosis

Prediction for

9-18Months

1 2015 HC, 0.7271 2016, HC 2017, HC 2018, HC Correct trend

2 2016 MCI,−0.7195 2016, naMCI 2017, aMCI Correct trend

3 2015 HC, 0.7271 2015, HC 2016, HC 2017, HC Correct trend

4 2015 MCI,−0.1175 2016, naMCI 2017, naMCI 2018, aMCI Correct trend

5 2015 HC, 0.114 2015, HC 2016, naMCI Correct trend

6 2015 HC, 0.6486 2015, HC 2016, aMCI 2017, naMCI Incorrect trend

7 2015 HC, 0.8001 2015, HC 2016, HC 2017, aMCI Correct trend

8 2015 MCI,−0.7258 2015, aMCI 2017, aMCI Correct trend

9 2015 HC, 0.4915 2015, HC 2016, aMCI Incorrect trend

10 2016 MCI,−0.5019 2015, aMCI 2017, aMCI Correct trend

11 2015 HC, 0.7271 2015, HC 2016, HC 2017, HC Correct trend

12 2016 MCI,−0.3531 2015, aMCI 2017, aMCI 2018, naMCI Correct trend

13 2015 HC, 0.2725 2015, HC 2016, HC 2017, naMCI Correct Trend

14 2016 MCI,−0.7188 2016, aMCI 2017, aMCI 2018, aMCI Correct trend

15 2016 HC, 0.7244 2016, HC 2017, aMCI 2018, naMCI Incorrect trend

16 2016 MCI,−0.4115 2016, aMCI 2017, aMCI Correct trend

17 2016 MCI,−0.6548 2016, aMCI 2017, aMCI 2018, aMCI Correct trend

18 2016 MCI,−0.6465 2016, aMCI 2017, aMCI Correct trend

19 2016 HC, 0.4964 2016, HC 2017, HC 2018, naMCI Correct trend

20 2017 HC, 0.4359 2016, HC 2017, HC 2018, HC Correct trend

21 2017 HC, 0.2649 2017, HC 2019, HC 2020, HC Correct trend

22 2017 MCI,−0.3434 2017, aMCI 2018, aMCI 2019, aMCI Correct trend

23 2017 MCI,−0.1189 2017, HC 2018, HC 2019, HC Misclassified

24 2017 MCI,−0.114 2017, aMCI 2018, aMCI 2019, aMCI Correct trend

25 2017 MCI,−0.6548 2017, aMCI 2018, naMCI 2019, naMCI Correct trend

26 2017 MCI,−0.3427 2017, aMCI 2018, aMCI Correct trend

Result Summary: Total number of subjects with at least one follow-up consensus diagnosis (made byMADRC) in about 9–18 months after the EEG test: 26;

Correct trend (i.e., subjects with progression trend predicted correctly): 22 out of 26, 84.61%; Incorrect trend (i.e., subjects with progression trend predicted

incorrectly): 3 out of 26, 11.54%;Misclassified: 1 out of 26, 3.85%.

[Correction added onDecember 27, 2023, after first online publication: Subject IDs were removed and test dates were revised to include only a year.]

sampling period is 2 ms, roughly speaking, the window size set L =

50, 100, 200, ⋯ , 1600 corresponds to the frequency range of 0.31

to 10 Hz, which also spans over the delta, theta, and alpha range and is

consistent with existing findings.10–13 Moreover, in literature,11 it was

pointed out that theta frequency is the earliest andmost sensitive EEG

marker of AD pathology. It is interesting to note that in our study, win-

dow size L = 100 (which corresponds to the theta band) contributed

most of the reliable voters among all the selected window sizes.

In addition, brain regions that were found to be most important in

the ROI analysis were those that are most often cited as involved in

MCI and AD deterioration (e.g., parietal, temporal, and occipital).11,14

It also should be noted that EEGelectrodes do reflect surrounding area

activities to some degree.

Concerning the relationship with existing predictive models in the

AD area, existing research literature on predictive models in the AD

area62–66 has mainly been focused on the prediction of the conver-

sion or progression from MCI to AD or dementia, with the major goal

to identify which individuals with MCI are more likely to develop AD.

Notably in Jiao et al.,67 it was pointed out that EEG is a promising tool

for the diagnosis and disease progression evaluation of MCI and AD.

The prediction on the incidence of MCI in older adults—before clinical

symptoms have occurred—has been very limited. Note that AD gen-

erally leads to irreversible deterioration of cognition; the lack of full

success in AD treatment to date indicates that the current interven-

tionsmay be too late to be efficient,68 and therefore calls for proactive

prediction of people at risk ofMCI before clinical symptomsmay occur.

In this article, we moved one step forward by showing that a soft

discrimination model can make it possible to predict the progression

of cognitive impairment even before MCI symptoms may first appear.

This study is an initial step toward soft detection and proactive
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DENG ET AL. 155

F IGURE 6 Frequency of occurrence of all the ROIs in the 45 selected features. (A), (B), For window size L = 50, 100, 200. (C), (D), For
window size L = 400, 800,1600. This figure illustrates the concept of multiscale functional connectivity analysis in both time and frequency
domains and shows the reciprocal relationship between the window size and frequency range of the features. Moreover, the right parietal (RP),
medial parietal (MP), left temporal (LT), occipital (Occ) are the ROI regions that appear most frequently in the selected features, indicating that
these regions play significant roles in differentiating HC andMCI in information transmission and receiving during the resting state. HC, healthy
control; LOO, leave one out; MCI, mild cognitive impairment; ROI, region of interest

prediction of MCI among older at-risk individuals, and we believe

that advanced research on proactive prediction of MCI would pro-

vide new insight for treatment options in fighting AD through early,

time-sensitive interventions in older adults at risk of cognitive impair-

ment, and therefore help prevent or delay the onset of MCI and

AD.

Does our model suffer from underfitting or overfitting? Underfit-

ting and overfitting are two main problems in machine learning that

degrade the performance of the machine learning model. Underfitting

happens when a model is oversimplified and is unable to capture the

underlying pattern of the data. An underfit model has poor perfor-

mance on the training data andwill also result in unreliable predictions

on the new data. On the other hand, overfitting happens when the

model captures the noise along with the underlying pattern in data,

generally because the model is too complex and/or the dataset is too

noisy. An overfit model tends to perform well for training data but has

poor performance with the test data and is generally more difficult

to be identified than underfitting. For these reasons, the k-fold cross-

validation technique is often applied to evaluate the performance of

machine learningmodels.

In our case, we tried to eliminate possible underfitting and overfit-

ting problems by including both simple classifiers (i.e., the ones with

fewer features) and complex classifiers (i.e., the ones with more fea-

tures) in the voter group. Aftermajority voting, both the sensitivity and
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156 DENG ET AL.

stability of the soft discrimination classifier are significantly improved,

and the model does demonstrate stable performance in leave-one-

out, 10-fold, 5-fold, and 3-fold cross-validations. Given the biological

complexity and variability of the human brain, the sample size of 137

participants may not be sufficient to capture the patterns of the brain

networks of HC and MCI and larger scale training may still be needed

before the practical application of themodel.

Another possible issuewe are facing is an unbalanced dataset. First,

we have more HC (84) than MCI (53). As a result, the model is bet-

ter trained for HC. We can see that in all the cross-validation tests,

the model achieves a higher accuracy in the discrimination of HC than

that of the MCI. We expect to fix this problem as our MCI sample size

increases. On the other hand, we would also like to point out that the

ratio of the number of HC and MCI here—84:53—closely reflects the

natural distribution of HC and MCI in our clinically observed datasets,

inwhichwe always havemoreHC thanMCI. Therefore, wewill explore

both balanced and unbalanced training for the model and see which

onewould deliver amore reliable result.

Second, as in many community studies, we are not able to recruit

enough male participants, therefore the unbalanced sex (female 123,

male 14) does not really allow us to address whether there are sex

differences in the analysis. However, we compare the leave-one-out

(LOO) discrimination accuracy of themodel on both females andmales,

as shown Figure 4. The discrimination model does show comparable

sensitivity in females andmales.

In terms of proactive prediction of MCI and future work, out of the

26 participants, three participantswith high soft scores (1. HC, 0.6486;

2. HC, 0.4915; 3. HC: 0.7244) progressed to MCI in 12 to 18 months

after the EEG test and the corresponding predictions are marked as

“incorrect trend.” It is possible that the incorrect trends reflect the lim-

itations of the features used for prediction and indicate that we may

need to adopt more diversifying features, such as the biomarkers that

reflect the localized neural activity at each individual region, and per-

haps also investigate the task-based EEG features. In addition, MCI

progression trend prediction based on the proposed soft discrimina-

tion model still needs to be verified through sizable longitudinal data

collection and analysis.Wewill further examinewhether lower-scoring

HC is more likely to progress to MCI, and whether low-scoring MCI is

more likely to develop AD. We also plan to extend it to a 3-class clas-

sification model of HC, MCI, and AD, and continue to investigate the

application of ourmodel to personalized assessment69 by following the

longitudinal data of individual participants.
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